题目内容
已知,则__ ___.
【解析】
试题分析:由利用直角三角形,把看做锐角对边为邻边为则斜边为,可得,
从而的.
考点:同角三角函数关系
已知集合,,且,则实数的取值范围是_______________.
若,则_________.
已知函数的定义域为集合.
(1)若函数的定义域也为集合,的值域为,求;
(2)已知,若,求实数的取值范围.
已知f(x)是定义在上的奇函数,当时,,若函数f(x)在区间[-1,t]上的最小值为-1,则实数t的取值范围是 .
对于函数,若存在实数对(),使得等式对定义域中的每一个都成立,则称函数是“()型函数”.
(Ⅰ)判断函数是否为 “()型函数”,并说明理由;
(Ⅱ)若函数是“()型函数”,求出满足条件的一组实数对;,
(Ⅲ)已知函数是“()型函数”,对应的实数对为.当时,,若当时,都有,试求的取值范围.
已知函数满足当时,总有.若则实数的取值范围是 .
设函数的定义域为,如果存在正实数,对于任意都有,且恒成立,则称函数为上的“型增函数”。已知函数是定义在上的奇函数,且当时,,若为上的“型增函数”,则实数的取值范围是 .
若函数在其定义域上为奇函数,则实数 .