题目内容

15.对于任意实数x,符号[x]表示不超过x的最大整数(如[-1.5]=-2,[0]=0,[2.3]=2),则[log2$\frac{1}{4}$]+[log2$\frac{1}{3}$]+[log21]+[log23]+[log24]的值为(  )
A.0B.-2C.-1D.1

分析 根据已知中符号[x]表示不超过x的最大整数,结合对数的运算性质,可得答案.

解答 解:[log2$\frac{1}{4}$]+[log2$\frac{1}{3}$]+[log21]+[log23]+[log24]
=-2+(-2)+0+1+2=-1,
故选:C.

点评 本题考查的知识点是函数求值,对数的运算性质,估算出每个式子的近似值是解答的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网