题目内容

已知函数),
(Ⅰ)证明:当时,对于任意不相等的两个正实数,均有成立;
(Ⅱ)记
(ⅰ)若上单调递增,求实数的取值范围;
(ⅱ)证明:.

(Ⅰ)详见解析;(Ⅱ)(ⅰ),(ⅱ) 详见解析.

解析试题分析:(Ⅰ)当时,对于任意不相等的两个正实数,均有成立,只需求出的解析式,两式作差得,判断符号即可证明;(Ⅱ)记,若上单调递增,求实数的取值范围,首先求出的解析式,从而得,若它在上单调递增,即它的导函数在上恒大于零,得恒成立,这是恒成立问题,只需把含有的放到不等式的一侧,不含的放到不等式的另一侧,即,转化为求的最大值问题,可利用导数求出最大值,从而可得实数的取值范围. 证明:,因为,只需证它的最小值为,可利用导数证明它的最小值为即可.
试题解析:(Ⅰ)证明: ,

,则   ①
,则,②
由①②知
(Ⅱ)(ⅰ)
,则上单调递增.
,则当时,恒成立,
即当时,恒成立.
,则当时,
上单调递减,从而
.(14分)
(ⅱ)法一:,令
表示上一点与直线上一点距离的平方.
,则
可得上单调递减,在上单调递增,
,则
直线的图象相切与点,点到直线的距离为
,故
法二:
,则

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网