题目内容

设F1,F2是椭圆
x2
4
+y2=1
的两个焦点,点P在椭圆上,且
PF1
PF2
=0
,则△F1PF2的面积为______.
PF1
PF2
=0
∴∠F1PF2=90°,
设|PF1|=m,|PF2|=n,由椭圆的定义可知m+n=2a=4,
∴m2+n2+2nm=4a2,∴m2+n2=4a2-2nm
由勾股定理可知m2+n2=4c2
求得mn=2,则△F1PF2的面积为1.
故答案为:1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网