题目内容

正方体ABCD-A1B1C1D1的棱长为a.
求:
(1)二面角A-BD-A1的正切值;
(2)AA1与平面A1BD所成的角的余弦值.
分析:(1)连接AC,AC∩BD=O,连接A1O,则∠A1OA为二面角A-BD-A1的平面角;
(2)过A作AE⊥A1O,垂足为E,则AE⊥平面A1BD,从而∠AA1O为AA1与平面A1BD所成的角.
解答:解:(1)连接AC,AC∩BD=O,连接A1O,则∠A1OA为二面角A-BD-A1的平面角
∵正方体ABCD-A1B1C1D1的棱长为a,
∴AO=
2
2
a
∴tan∠A1OA=
a
2
2
a
=
2

(2)过A作AE⊥A1O,垂足为E,
∵AE⊥BD,A1O∩BD=O,∴AE⊥平面A1BD
∴∠AA1O为AA1与平面A1BD所成的角
∵A1A=a,AO=
2
2
a
∴A1O=
6
2
a
∴AA1与平面A1BD所成的角的余弦值为
a
6
2
a
=
6
3
点评:本题考查面面角与线面角,解题的关键是确定线面角与面面角,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网