题目内容
【题目】如图,在棱长为2的正方体中,M是线段AB上的动点.
证明:平面;
若点M是AB中点,求二面角的余弦值;
判断点M到平面的距离是否为定值?若是,求出定值;若不是,请说明理由.
【答案】(1)证明见解析;(2);(3)点到平面的距离为定值.
【解析】
(1)利用正方体的性质得,由线面平行的判定定理证明即可.(2)建立空间直角坐标系求出平面和平面的法向量,利用向量的夹角公式求出二面角的余弦值,即可得解.(3)由(1)得点到平面的距离等于上任意一点到平面的距离,结合(2)和点到面的距离公式得点到平面的距离即可.
(1)证明:因为在正方体中,,平面,平面,平面
(2)在正方体中,,,两两互相垂直,则建立空间直角坐标系如图所示,则,,,,所以,,,,设向量,分别为平面和平面的法向量,由
取,则,,.
同理
取,则,,.
,
又二面角的平面角为锐角,
二面角的余弦值为
(3)由(1)知平面.点到平面的距离等于上任意一点到平面的距离,取点为,结和(2)和点到平面的距离.点到平面的距离定值为
练习册系列答案
相关题目