题目内容

15.如图,正方体ABCD-A1B1C1D1的棱长为2.
(1)证明:AC⊥B1D;
(2)求三棱锥C-BDB1的体积.

分析 (1)证明AC⊥平面BB1D,即可证明AC⊥B1D;
(2)利用等体积转化求三棱锥C-BDB1的体积.

解答 证明:(1)∵ABCD-A1B1C1D1是正方体,
∴BB1⊥平面ABCD,
∵AC?平面ABCD,
∴BB1⊥AC,
∵AC⊥BD,BB1∩BD=B,
∴AC⊥平面BB1D,
∵B1D?平面BB1D,
∴AC⊥B1D,
(2)解:∵BB1⊥平面ABCD,
∴BB1是三棱锥B1-BDC的高,
∴${V}_{C-BD{B}_{1}}$=${V}_{{B}_{1}-BDC}$=$\frac{1}{3}×\frac{1}{2}×2×2×2$=$\frac{4}{3}$.

点评 本题考查线面垂直的证明,考查三棱锥体积的计算,利用等体积转化是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网