ÌâÄ¿ÄÚÈÝ
5£®¶¨ÒåÓòΪRµÄº¯Êýf£¨x£©Âú×ãf£¨x+1£©=2f£¨x£©£¬µ±x¡Ê[0£¬2£©Ê±£¬f£¨x£©=$\left\{\begin{array}{l}{{x}^{2}-x£¬x¡Ê[0£¬1£©}\\{lo{g}_{\sqrt{2}}£¨x+1£©£¬x¡Ê[1£¬2£©}\end{array}\right.$£¬Èôx¡Ê[-2£¬0£©Ê±£¬¶ÔÈÎÒâµÄt¡Ê[1£¬2]¶¼ÓÐf£¨x£©¡Ý$\frac{t}{16}$-$\frac{a}{8{t}^{2}}$³ÉÁ¢£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©A£® | £¨-¡Þ£¬6£© | B£® | [6£¬+¡Þ£© | C£® | £¨-¡Þ£¬6] | D£® | £¨-¡Þ£¬12] |
·ÖÎö Ê×ÏÈÇó½â³öÔÚx¡Ê[-2£¬0£©Ê±µÄ·Ö¶Îº¯Êý±í´ïʽ£¬È»ºóÇó½â³öÕâ¸öº¯ÊýµÄ×îСֵ£¬È»ºóÔÙÀûÓúã³ÉÁ¢µÄÌõ¼þÇó½â£®
½â´ð ½â£ºÓÉÌâÒâµÃf£¨x£©=$\frac{1}{4}$f£¨x+2£©£¬µ±x¡Ê[-2£¬-1£©Ê±£¬x+2¡Ê[0£¬1£©£¬f£¨x£©=$\frac{1}{4}$f£¨x+2£©=$\frac{1}{4}[£¨x+2£©^{2}-£¨x+2£©]$£¾f£¨-$\frac{3}{2}$£©=$-\frac{1}{16}$£¬µ±x¡Ê[-1£¬0£©Ê±£¬
x+2¡Ê[1£¬2£©£¬f£¨x£©=$\frac{1}{4}$f£¨x+2£©=$\frac{1}{4}$$lo{g}_{\sqrt{2}}£¨x+3£©$¡Ýf£¨1£©=1£¬ËùÒÔµ±x¡Ê[-2£¬0£©Ê±£¬f£¨x£©µÄ×îСֵÊÇ-$\frac{1}{16}$£¬ËùÒÔ¶ÔÈÎÒâµÄt¡Ê[1£¬2]¶¼ÓÐ-$\frac{1}{16}$¡Ý$\frac{t}{16}$-$\frac{a}{8{t}^{2}}$³ÉÁ¢£¬ËùÒÔ2a¡Ýt3+t2£¬Áîg£¨t£©=t3+t2£¬g¡ä£¨t£©=3t2+2t£¬ÓÉg¡ä£¨t£©£¾0µÃt£¼-$\frac{2}{3}$»òt£¾0£¬¼´t¡Ê[1£¬2]ʱg£¨t£©µ¥µ÷µÝÔö£¬ËùÒÔg£¨t£©×î´óÖµÊÇg£¨2£©=12£¬ËùÒÔ2a¡Ý12£¬
ËùÒÔa¡Ý6£¬
¹ÊÑ¡£ºB£®
µãÆÀ ¹Ø¼üÊÇÇó½â³öf£¨x£©ÔÚÒÑÖªÇø¼äÉϵÄ×îСֵ£¬ÒÔ¼°ÕýÈ·ÀûÓò»µÈʽºã³ÉÁ¢µÄÌõ¼þ½øÐзÖÀë²ÎÊýÇó½â£®