题目内容
【题目】某地方政府召开全面展开新旧动能转换重大工程动员大会,动员各方力量,迅速全面展开新旧动能转换重大工程.某企业响应号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前、后生产的大量产品中各抽取了200件作为样本,检测一项质量指标值.若该项质量指标值落在内的产品视为合格品,否则为不合格品.如图所示的是设备改造前样本的频率分布直方图.
(1)若设备改造后样本的该项质量指标值服从正态分布,求改造后样本中不合格品的件数;
(2)完成下面2×2列联表,并判断是否有99%的把握认为该企业生产的这种产品的质量标值与设备改造有关.
0 | 设备改造前 | 设备改造后 | 合计 |
合格品件数 | |||
不合格品件数 | |||
合计 |
附参考公式和数据:
若,则,.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)10;(2)列联表见解析,有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关.
【解析】
(1)设备改造后该项质量指标服从正态分布,得,,然后,然后即可求出
(2)由设备改造前样本的频率分布直方图,可知不合格频数为,然后填表,再算出即可
解:(1)∵设备改造后该项质量指标服从正态分布,
得,,
又∵,
∴设备改造后不合格的样本数为.
(2)由设备改造前样本的频率分布直方图,可知不合格频数为
.
得2×2列联表如下
设备改造前 | 设备改造后 | 合计 | |
合格品 | 160 | 190 | 350 |
不合格品 | 40 | 10 | 50 |
合计 | 200 | 200 | 400 |
,
∴有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关.
【题目】某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:
组别 | ||||||
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 10 | 7 | 13 |
(1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?
(2)若问卷得分不低于80分的人称为“环保达人”.视频率为概率.
①在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;
②为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动.每次抽奖获得红包的金额和对应的概率.如下表:
红包金额(单位:元) | 10 | 20 |
概率 |
现某市民要参加此次问卷调查,记(单位:元)为该市民参加间卷调查获得的红包金额,求的分布列及数学期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |