题目内容
【题目】解不等式: ≥2.
【答案】解:不等式移项得: ﹣2≥0, 变形得: ≤0,
即2(x﹣ )(x﹣6)(x﹣3)(x﹣5)≤0,且x≠3,x≠5,
根据题意画出图形,如图所示:
根据图形得: ≤x<3或5<x≤6,
则原不等式的解集为[ ,3)∪(5,6].
【解析】把不等式的右边移项到左边,通分后把分子分母都分解因式,得到的式子小于等于0,然后根据题意画出图形,在数轴上即可得到原不等式的解集.
【考点精析】根据题目的已知条件,利用解一元二次不等式的相关知识可以得到问题的答案,需要掌握求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边.
练习册系列答案
相关题目
【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回归直线方程 = x+ ,其中 =﹣20, = ﹣
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入﹣成本)