题目内容
9.设x∈R,则“|x-2|<1”是“x2+x>0”的( )A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
分析 根据充分条件和必要条件的定义进行判断即可.
解答 解:由|x-2|<1得-1<x-2<1,得1<x<3,
由x2+x>0得x>0或x<-1,
则“|x-2|<1”是“x2+x>0”的充分不必要条件,
故选:A
点评 本题主要考查充分条件和必要条件的判断,根据不等式的解法求出不等式的等价条件是解决本题的关键.
练习册系列答案
相关题目
17.椭圆$\frac{{x}^{2}}{4}$+y2=1的长轴长为( )
A. | 4 | B. | 2 | C. | 1 | D. | 2$\sqrt{3}$ |