题目内容

已知函数f(x)=sin(ωx+φ),(ω>0,,0<φ<π)的一系列对应值如表:
x -
π
12
π
6
12
3
11π
12
y 0 1 0 -1 0
(Ⅰ)求f(x)的解析式;
(Ⅱ)在△ABC中,a、b、c分别是△ABC的对边,若f(A)=
1
2
,c=2,a=
3
b
,求△ABC的面积.
分析:(Ⅰ)由表格中的数据可求出f(x)的周期T,然后利用周期公式求出ω的值,把求出的ω的值代入f(x)中,利用表格中的第二列的一对x与y的值,由0<φ<π,利用特殊角的三角函数值即可求出φ的值,从而确定出f(x)的解析式;
(Ⅱ)由f(A)=
1
2
,由第一问求出的f(x)的解析式和A的范围,利用特殊角的三角函数值求出A的度数,进而求出cosA的值,然后利用余弦定理得到一个关系式,把a=
3
b,c=2及cosA的值代入得到关于b的一元二次方程,求出方程的解得到b的值,然后利用三角形的面积公式,由b,c及sinA的值,即可求出△ABC的面积.
解答:解:(Ⅰ)由题中表格给出的信息可知,函数f(x)的周期为T=
11π
12
-(-
π
12
)=π,
所以ω=
π
=2,
又sin(2×
π
6
+φ)=1,且φ=2kπ+
π
2
-
π
3
=2kπ+
π
6
(k∈Z),
由0<φ<π,所以φ=
π
6

所以函数的解析式为f(x)=sin(2x+
π
6
);
(Ⅱ)∵f(A)=
1
2
,∴sin(2A+
π
6
)=
1
2

又∵A为△ABC的内角,
π
6
<2A+
π
6
13π
6

∴2A+
π
6
=
6

∴A=
π
3

由a2=b2+c2-2bccosA,得(
3
b)2=b2+22-2×2×b×
1
2

即b2+b-2=0,解得b=1或b=-2(舍去),
则S=
1
2
bcsinA=
1
2
×1×2×
3
2
=
3
2
点评:此题考查了由函数y=Asin(ωx+φ)的部分图象确定其解析式,余弦定理及三角形的面积公式.熟练掌握公式及法则是解本题的关键,同时在求角度时注意角度的范围,牢记特殊角的三角函数值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网