题目内容

4.由曲线$\left\{\begin{array}{l}{x=t}\\{y={t}^{2}}\end{array}\right.$(t为参数)和y=x+2围成的封闭图形的面积为$\frac{9}{2}$.

分析 先消去参数t,可得曲线为y=x2,联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出曲线y=x2与直线y=2+x围成的封闭图形的面积,即可求得结论.

解答 解:由曲线$\left\{\begin{array}{l}{x=t}\\{y={t}^{2}}\end{array}\right.$(t为参数),
可得曲线为y=x2,联立$\left\{\begin{array}{l}{y=x+2}\\{y={x}^{2}}\end{array}\right.$,可得$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$或$\left\{\begin{array}{l}{x=-1}\\{y=1}\end{array}\right.$,
∴曲线y=x2与直线y=2+x围成的封闭图形的面积为${∫}_{-1}^{2}$(x+2-x2)dx
=($\frac{1}{2}$x2+2x-$\frac{1}{3}$x3)|${\;}_{-1}^{2}$=($\frac{1}{2}$×4+4-$\frac{8}{3}$)-($\frac{1}{2}$-2+$\frac{1}{3}$)=$\frac{9}{2}$.
故答案为:$\frac{9}{2}$.

点评 本题考查参数方程和普通方程的互化,利用定积分求面积,解题的关键是确定被积区间及被积函数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网