题目内容
【题目】某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应的提高比例为0.75x,同时预计年销售量增加的比例为0.6x.已知年利润=(出厂价﹣投入成本)×年销售量.
(1)写出本年度预计的年利润y与投入成本增加的比例x的关系式;
(2)为使本年度的年利润比上年有所增加,问投入成本增加的比例x应在什么范围内?
【答案】(1)y=﹣60x2+20x+200(0<x<1).(2)为保证本年度的年利润比上年度有所增加,投入成本增加的比例x应满足 0<x<.
【解析】
试题(1)根据若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应的提高比例为0.75x,同时预计年销售量增加的比例为0.6x和年利润=(出厂价﹣投入成本)×年销售量.建立利润模型,要注意定义域.
(2)要保证本年度的利润比上年度有所增加,只需今年的利润减去的利润大于零即可,解不等式可求得结果,要注意比例的范围.
解:(1)由题意得
y=[1.2×(1+0.75x)﹣1×(1+x)]×1000×(1+0.6x)(0<x<1)(4分)
整理得y=﹣60x2+20x+200(0<x<1).(6分)
(2)要保证本年度的利润比上年度有所增加,当且仅当
即(9分)
解不等式得.
答:为保证本年度的年利润比上年度有所增加,投入成本增加的比例x应满足 0<x<.(12分)
练习册系列答案
相关题目