搜索
题目内容
与椭圆
共焦点且过点P(2,1)的双曲线方程是( )
A.
B.
C.
D.
试题答案
相关练习册答案
B
试题分析:在椭圆
中,
,∴
,∴焦点为
,设所求的双曲线方程为:
,由双曲线的定义可知:
,∴
,∴
,故双曲线方程为:
.
练习册系列答案
金考卷单元专项期中期末系列答案
步步高大一轮复习讲义系列答案
毕业生暑期必读系列答案
名师金手指暑假生活系列答案
暑假乐园星球地图出版社系列答案
名校秘题全程导练系列答案
千里马走向假期期末仿真试卷寒假系列答案
新锐图书假期园地暑假作业中原农民出版社系列答案
暑假百分百期末暑假衔接总复习系列答案
假期学习乐园暑假系列答案
相关题目
如图,点
分别是椭圆C:
的左、右焦点,过点
作
轴的垂线,交椭圆
的上半部分于点
,过点
作
的垂线交直线
于点
.
(1)如果点
的坐标为(4,4),求椭圆
的方程;
(2)试判断直线
与椭圆
的公共点个数,并证明你的结论.
已知左焦点为
的椭圆过点
.过点
分别作斜率为
的椭圆的动弦
,设
分别为线段
的中点.
(1)求椭圆的标准方程;
(2)若
为线段
的中点,求
;
(3)若
,求证直线
恒过定点,并求出定点坐标.
抛物线M:
的准线过椭圆N:
的左焦点,以坐标原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的部分以及y轴的正半轴相交于点A与点B,直线AB与x轴相交于点C.
(1)求抛物线M的方程.
(2)设点A的横坐标为x
1
,点C的横坐标为x
2
,曲线M上点D的横坐标为x
1
+2,求直线CD的斜率.
设点A(
,0),B(
,0),直线AM、BM相交于点M,且它们的斜率之积为
.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)若直线
过点F(1,0)且绕F旋转,
与圆
相交于P、Q两点,
与轨迹C相交于R、S两点,若|PQ|
求△
的面积的最大值和最小值(F′为轨迹C的左焦点).
已知椭圆
的离心率为
,以原点为圆心,椭圆的短半轴为半径的圆与直线
相切,直线
与椭圆C相交于A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求
的取值范围;
已知
、
是椭圆
的左、右焦点,且离心率
,点
为椭圆上的一个动点,
的内切圆面积的最大值为
.
(1) 求椭圆的方程;
(2) 若
是椭圆上不重合的四个点,满足向量
与
共线,
与
共
线,且
,求
的取值范围.
已知双曲线的顶点与焦点分别是椭圆
的焦点和顶点,若双曲线的两条渐近线与椭圆的焦点构成的四边形恰为正方形,则椭圆的离心率为( )
A.
B.
C.
D.
已知双曲线方程
的离心率为
,其实轴与虚轴的四个顶点和椭圆
的四个顶点重合,椭圆G的离心率为
,一定有( )
A.
B.
C.
D.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总