题目内容

【题目】已知二次函数f(x)的二次项系数为a(a<0),且1和3是函数y=f(x)+2x的两个零点.若方程f(x)+6a=0有两个相等的根,求f(x)的解析式.

【答案】解:因为1,3是y=f(x)+2x的两个零点,且a<0,所以f(x)+2x=a(x﹣1)(x﹣3),
得f(x)=a(x﹣1)(x﹣3)﹣2x=ax2﹣(2+4a)x+3a.①
所以f(x)+6a=ax2﹣(2+4a)x+9a=0.②
又方程②有两个相等的实根,
所以△=[﹣(2+4a)]2﹣4a9a=0,即5a2﹣4a﹣1=0,
解得a=1(舍去)或a=
将a= 代入①,得f(x)=
【解析】利用1,3是y=f(x)+2x的两个零点,推出f(x)=a(x﹣1)(x﹣3)﹣2x=ax2﹣(2+4a)x+3a,结合f(x)+6a═0,有两个相等的实根,通过△=0求出a,得到函数的解析式.
【考点精析】关于本题考查的二次函数的性质,需要了解当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网