题目内容
已知定义域为R的函数f(x)对任意实数x、y满足f(x+y)+f(x-y)=2f(x)cosy,且![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172612847723383/SYS201311031726128477233009_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172612847723383/SYS201311031726128477233009_ST/1.png)
A.②③
B.②④
C.①③
D.①④
【答案】分析:令x=y=
可求出f(
)的值,得知①不对排除CD.由x=
可知f(x)在(0,x)内单不是调递减排除B.
解答:解:令x=y=
,根据f(x+y)+f(x-y)=2f(x)cosy,且
.
∴
∴
故①不对
∵f(x+y)+f(x-y)=2f(x)cosy
令x=0,则
f(y)+f(-y)=f(0)cosy=0
f(-y)=-f(y)
所以f(x)是奇函数 故②对.
令x=
,由f(0)=0,f(
)=1知④不对
故选A.
点评:本题主要考查抽象函数的有关问题.抽象函数值、单调性、周期性、奇偶性经常是考查重点.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172612847723383/SYS201311031726128477233009_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172612847723383/SYS201311031726128477233009_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172612847723383/SYS201311031726128477233009_DA/2.png)
解答:解:令x=y=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172612847723383/SYS201311031726128477233009_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172612847723383/SYS201311031726128477233009_DA/4.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172612847723383/SYS201311031726128477233009_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172612847723383/SYS201311031726128477233009_DA/6.png)
∵f(x+y)+f(x-y)=2f(x)cosy
令x=0,则
f(y)+f(-y)=f(0)cosy=0
f(-y)=-f(y)
所以f(x)是奇函数 故②对.
令x=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172612847723383/SYS201311031726128477233009_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172612847723383/SYS201311031726128477233009_DA/8.png)
故选A.
点评:本题主要考查抽象函数的有关问题.抽象函数值、单调性、周期性、奇偶性经常是考查重点.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目