题目内容

设Sn是正项数列{an}的前n项和,且Sn=
1
4
an2+
1
2
an-
3
4

(1)求a1的值;
(2)求数列{an}的通项公式;
(3)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.
(1)当n=1时,由条件可得 a1=s1=
1
4
a21
+
1
2
a1-
3
4
,解出a1=3.
(2)又4sn=an2+2an-3①,可得 4sn-1=
a2n-1
+2an-3(n≥2)②,
①-②4an=an2-
a2n-1
+2an-2an-1 ,即
a2n
-
a2n-1
-2(an+an-1)=0

(
an
+an-1)(an-an-1-2)=0

∵an+an-1>0,∴an-an-1=2(n≥2),
∴数列{an}是以3为首项,2为公差之等差数列,
∴an=3+2(n-1)=2n+1.
(3)由bn=2n,可得Tn=3×21+5×22+…+(2n+1)•2n+0③,
2Tn=0+3×22+…+(2n-1)•2n+(2n+1)2n+1④,
④-③可得 Tn=-3×21-2(22+23+…+2n)+(2n+1)2n+1=(2n-1)2n+1+2,
Tn=(2n-1)•2n+1+2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网