题目内容
20.设向量$\overrightarrow a=(1,-2)$,$\overrightarrow b=(3,4)$,则向量$\overrightarrow a$在向量$\overrightarrow b$方向上的投影为-1.分析 根据投影的定义,应用公式向量$\overrightarrow a$在向量$\overrightarrow b$方向上的投影为|$\overrightarrow{a}$|cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{\overrightarrow{a}•\overrightarrow{b}}{\left|\overrightarrow{b}\right|}$求解.
解答 解:向量$\overrightarrow a=(1,-2)$,$\overrightarrow b=(3,4)$,根据投影的定义可得:
向量$\overrightarrow a$在向量$\overrightarrow b$方向上的投影为|$\overrightarrow{a}$|cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{\overrightarrow{a}•\overrightarrow{b}}{\left|\overrightarrow{b}\right|}$=$\frac{3-8}{\sqrt{9+16}}$=-1.
故答案为:-1.
点评 本题主要考查向量投影的定义及求解的方法,公式与定义两者要灵活运用.解答关键在于要求熟练应用公式.
练习册系列答案
相关题目
11.若定义在R上的函数满足f(-x)=f(x),f(4-x)=f(x),且当x∈[0,2]时,f(x)=$\sqrt{4-{x^2}}$,则函数H(x)=|xex|-f(x)在区间[-6,2]上的零点个数为( )
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
8.若过点(2,0)的直线l与圆C:x2+y2=1有公共点,则直线l的斜率k的取值范围是( )
A. | [-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$] | B. | (-∞,-$\frac{\sqrt{3}}{3}$]∪[$\frac{\sqrt{3}}{3}$,+∞) | C. | $[{-\sqrt{3},\sqrt{3}}]$ | D. | $({-∞,-\sqrt{3}}]∪[{\sqrt{3},+∞})$ |
15.为了了解某县今年高考准备报考体育专业的学生的体重情况,将所得的学生体重数据分组整理后,画出了频率分布直方图(如图),已知图中从左到右的前3小组的频率a,b,c恰成等差数列,若抽取的学生人数是48,则第2小组的频数为( )
A. | 6 | B. | 12 | C. | 18 | D. | 24 |
9.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F也是抛物线C2:y2=2px(p>0)的焦点,C1与C2的一个交点为P,若PF⊥x轴,则双曲线C1的离心率为( )
A. | $\sqrt{2}$+1 | B. | 2$\sqrt{2}$ | C. | 2$\sqrt{2}$-1 | D. | $\sqrt{3}$+1 |
10.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{6}$=1与抛物线y2=2px有公共焦点F,双曲线与抛物线的准线交于M、N两点,且△MNF为等边三角形,则p的值为( )
A. | 2 | B. | 2$\sqrt{2}$ | C. | 4$\sqrt{2}$ | D. | 6 |