题目内容
已知函数f(x)=ax+ln x(a∈R).
(1)若a=1,求曲线y=f(x)在x=处切线的斜率;
(2)求函数f(x)的单调区间;
(3)设g(x)=2x,若对任意x1∈(0,+∞),存在x2∈[0,1],使f(x1)<g(x2),
求实数a的取值范围.
解:(1)f′(x)=1+(x>0),f′()=1+2=3.
故曲线y=f(x)在x=处切线的斜率为3.
(2)f′(x)=a+=(x>0).
①当a≥0时,由于x>0,故ax+1>0,f′(x)>0,
所以f(x)的单调递增区间为(0,+∞);
②当a<0时,由f′(x)=0,得x=-,
在区间上f′(x)>0,在区间上f′(x)<0.所以,函数f(x)的单调递增区间为,单调递减区间为.
(3)由题可知,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),转化为[f(x)]max<[g(x)]max,而[g(x)]max=2.
由(2)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)
当a<0时,f(x)在上单调递增,在上单调递减,
故f(x)的极大值即为最大值,f=-1+ln=-1-ln(-a),所以2>-1-ln(-a),解得a<-.
所以,a的取值范围为
练习册系列答案
相关题目