题目内容
(本题满分15分)已知函数.
(I)讨论在上的奇偶性;
(II)当时,求函数在闭区间[-1,]上的最大值.
(I)讨论在上的奇偶性;
(II)当时,求函数在闭区间[-1,]上的最大值.
(1)f(x)是非奇非偶函数;(2)
(1)f(x)=|x|(x-a)
当a=0时,f(x)=x·|x|为奇函数
当a≠0时,f(x)=(x-a)|x|,∵f(-a)≠f(a)且f(-a)≠-f(a)
∴f(x)是非奇非偶函数
(2)当a=0时,f(x)=x|x|是奇函数,在R上单调递增
∴当-1≤x≤时,f(-1)≤f(x)≤f()f(x)∈[-1,],此时f(x)max=
当a<0时,
即
①若-1≤即a≥-2时,f(x)的最大值为f()或f()
∵f()-f()=
又∵-2≤a<0,则f()<f(),∴f()为最大值
②若≤-1即a≤-2,f(x)的最大值为f(-1)或f()
∵f(-1)-f()=(-1-a)-(-a)=--
当a≤时,f(1)≥f()
当≤a≤-2时,f(-1)≤f()
综上可知:
当a=0时,f(x)=x·|x|为奇函数
当a≠0时,f(x)=(x-a)|x|,∵f(-a)≠f(a)且f(-a)≠-f(a)
∴f(x)是非奇非偶函数
(2)当a=0时,f(x)=x|x|是奇函数,在R上单调递增
∴当-1≤x≤时,f(-1)≤f(x)≤f()f(x)∈[-1,],此时f(x)max=
当a<0时,
即
①若-1≤即a≥-2时,f(x)的最大值为f()或f()
∵f()-f()=
又∵-2≤a<0,则f()<f(),∴f()为最大值
②若≤-1即a≤-2,f(x)的最大值为f(-1)或f()
∵f(-1)-f()=(-1-a)-(-a)=--
当a≤时,f(1)≥f()
当≤a≤-2时,f(-1)≤f()
综上可知:
练习册系列答案
相关题目