题目内容
已知函数f(x)=
sin2x-cos2x-
,(x∈R)
(1)求函数f(x)的对称轴;
(2)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=
,f(C)=0,sinB=2sinA,求a,b的值.
| ||
2 |
1 |
2 |
(1)求函数f(x)的对称轴;
(2)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=
3 |
(1)f(x)=
sin2x-cos2x-
=
sin2x-
-
=
sin2x-
cos2x-1
=sin(2x-
)-1.
由2x-
=kπ+
,k∈Z,∴x=
+
,k∈Z,
∴f(x)的对称轴是:x=
+
,k∈Z;
(2)由f(C)=0,得sin(2C-
)-1=0,则sin(2C-
)=1,
∵0<C<π,∴-
<2C-
<
,∴2C-
=
,解得C=
.
∵sinB=2sinA,
由正弦定理得,b=2a ①
由余弦定理得,c2=a2+b2-2abcos
,即a2+b2-ab=3 ②
由①②解得a=1,b=2.
| ||
2 |
1 |
2 |
=
| ||
2 |
1+cos2x |
2 |
1 |
2 |
=
| ||
2 |
1 |
2 |
=sin(2x-
π |
6 |
由2x-
π |
6 |
π |
2 |
kπ |
2 |
π |
3 |
∴f(x)的对称轴是:x=
kπ |
2 |
π |
3 |
(2)由f(C)=0,得sin(2C-
π |
6 |
π |
6 |
∵0<C<π,∴-
π |
6 |
π |
6 |
11π |
6 |
π |
6 |
π |
2 |
π |
3 |
∵sinB=2sinA,
由正弦定理得,b=2a ①
由余弦定理得,c2=a2+b2-2abcos
π |
3 |
由①②解得a=1,b=2.

练习册系列答案
相关题目