题目内容

20.如图,梯形ABCD中,AD∥BC,DC⊥BC,AD=2,BC=6,若以AB为直径的⊙O与CD相切于点E,则DE等于(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.4D.8

分析 连接OE,过D作DF∥AB,则OE⊥CD;OE是梯形ABCD的中位线,故OE=$\frac{1}{2}$(BC+AD),则AD=2OE-BC=2×4-5=3,可求BF=AD=3,故CF可求,进而可求出CD的长.即可求出DE.

解答 解:连接OE,过D作DF∥AB,梯形ABCD中,AD∥BC,DC⊥BC,AB为直径的⊙O与DC相切于E,故OE⊥CD,OE是梯形ABCD的中位线,OE=$\frac{1}{2}$(BC+AD),即AD=2OE-BC.OE=$\frac{2+6}{2}$=4,AB=8,
∵AD∥BC,AB∥DF,
∴四边形ABFD是平行四边形,BF=AD=2,CF=BC-BF=6-2=4,DF=AB=8,CD=$\sqrt{{DF}^{2}-{CF}^{2}}$=$\sqrt{{8}^{2}-{4}^{2}}$=$4\sqrt{3}$.
∴DE=2$\sqrt{3}$.
故选:B.

点评 本题考查的是切线的性质,勾股定理及中位线定理,解答此题的关键是作出辅助线,构造出直角三角形解答.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网