题目内容

如图,在长方形ABCD中,AB=BC=1,E为线段DC上一动点,现将AED沿AE折起,使点D在面ABC上的射影K在直线AE上,当ED运动到C,则K所形成轨迹的长度为   (   )
         
A.B.C.D.
A

试题分析:根据△AED沿AE折起,使点D在面ABC上的射影K在直线AE上,可知D′K⊥AE,所以K的轨迹是以AD′为直径的一段圆弧D′K,求出圆心角∠D′OK,即可求得K所形成轨迹的长度.

解:由题意,D′K⊥AE,所以K的轨迹是以AD′为直径的一段圆弧D′K,设AD′的中点为O,,∵长方形ABCD′中,AB= ,BC=1,∴∠D′AC=60°∴∠D′OK=120°= π,∴K所形成轨迹的长度为π×=故选A.
点评:本题以平面图形的翻折为载体,考查立体几何中的轨迹问题,考查弧长公式的运用,解题的关键是利用D′K⊥AE,从而可知K的轨迹是以AD′为直径的一段圆弧D′K
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网