题目内容
(本小题满分12分)
已知数列{
}满足
,且点
在函数
的图象上,其中
=1,2,3,….
(Ⅰ)证明:数列{lg(1+
)}是等比数列;
(Ⅱ)设
=(1+
)(1+
)…(1+
),求
及数列{
}的通项.
已知数列{
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520361348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520564412.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520580562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520595652.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520627297.png)
(Ⅰ)证明:数列{lg(1+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520361348.png)
(Ⅱ)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520673373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520689315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520705344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520361348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520673373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520361348.png)
(Ⅰ)证明见解析;
(Ⅱ)由(Ⅰ)知lg(
+1)=2n-1lg(1+
)
=2n-1lg3=lg
.∴
+1=
. 则
=
-1
∴
=(1+
)(1+
)…(1+
)=
·
·
·…·
=
=
.∴
=
,
=
-1.
(Ⅱ)由(Ⅰ)知lg(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520361348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520689315.png)
=2n-1lg3=lg
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225521001384.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520361348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225521001384.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520361348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225521001384.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520673373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520689315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520705344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520361348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225521594362.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225521625336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225521641356.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225521656383.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225521890556.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225521906399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520673373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225521906399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520361348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225521656383.png)
(I)紧扣等比数列的定义进行证明即可.先由由于(
,
)在函数
的图象上,
可得
,从而可得
,
,从而得到证明.
(II)求出
,然后可知
然后再利用等比数列前n项和公式求解.
(Ⅰ)证明: 由于(
,
)在函数
的图象上,
∴
=
+2
,∴
+1=
. …………4分
∵
=2,∴
+1﹥1,∴lg(
+1)=2lg(
+1).
∴数列{lg(
+1)}是公比为2的等比数列. …………6分
(Ⅱ)解: 由(Ⅰ)知lg(
+1)=2n-1lg(1+
)
=2n-1lg3=lg
.∴
+1=
. 则
=
-1 …………9分
∴
=(1+
)(1+
)…(1+
)=
·
·
·…·
=
=
.∴
=
,
=
-1. …………12分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520361348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225522171400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225522187447.png)
可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225522202632.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225522233693.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225522265905.png)
(II)求出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225522374599.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225522389991.png)
(Ⅰ)证明: 由于(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520361348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225522171400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225522187447.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225522171400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225522717398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520361348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225522171400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225522779564.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520689315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520361348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225522171400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520361348.png)
∴数列{lg(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520361348.png)
(Ⅱ)解: 由(Ⅰ)知lg(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520361348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520689315.png)
=2n-1lg3=lg
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225521001384.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520361348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225521001384.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520361348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225521001384.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520673373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520689315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520705344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520361348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225521594362.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225521625336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225521641356.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225521656383.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225521890556.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225521906399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520673373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225521906399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225520361348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225521656383.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目