题目内容
【题目】己知{an}是等差数列,其前n项和Sn=n2﹣2n+b﹣1,{bn}是等比数列,其前n项和Tn,则数列{ bn +an}的前5项和为( )
A.37B.-27C.77D.46
【答案】C
【解析】
由等差数列的求和公式、等比数列的求和公式,结合数列的递推式,可得b=1,a=2,求得数列{an},{bn}的通项公式,再由数列的分组求和,结合等差数列和等比数列的求和公式,可得所求和.
{an}是等差数列,其前n项和,
由等差数列的求和公式可得b﹣1=0,即b=1,
即Sn=n2﹣2n,
a1=S1=﹣1,an=Sn﹣Sn﹣1=n2﹣2n﹣(n﹣1)2+2(n﹣1)=2n﹣3,
则an=2n﹣3,n∈N*;
{bn}是等比数列,其前n项和,
则b13,bn=Tn﹣Tn﹣13n3n﹣1=﹣23n﹣1,
则3=﹣2,即a=2,
则bn +an=n+2n,
数列{ bn +an}的前5项和为(1+2+…+5)+(2+4+…+32)
5×677.
故选:C.
练习册系列答案
相关题目
【题目】某中学将100名高一新生分成水平相同的甲,乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲,乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下,计成绩不低于90分者为“成绩优秀”.
(1)从乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;
(2)由以上统计数据填写下面2x2列联表,并判断是否有的把握认为“成绩优秀”与教学方式有关.
甲班(A方式) | 乙班(B方式) | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
附:
P( | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | /tr>