题目内容

【题目】已知抛物线C的焦点为FQ是抛物线上的一点,

(Ⅰ)求抛物线C的方程;

(Ⅱ)过点作直线l与抛物线C交于MN两点,在x轴上是否存在一点A,使得x轴平分?若存在,求出点A的坐标,若不存在,请说明理由.

【答案】(Ⅰ)(Ⅱ)存在,

【解析】

(Ⅰ)由题意可知,设,由即可求出p的值,从而得到抛物线C的方程;

(Ⅱ)对直线l的斜率分情况讨论,当直线l的斜率不存在时,由抛物线的对称性可知x轴上任意一点A(不与点重合),都可使得x轴平分

当直线l的斜率存在时,由题意可得,设直线l的方程为:与抛物线方程联立,利用韦达定理代入,解得,故点

解:(Ⅰ)由题意可知,

∵点Q在物线C上,∴设

,解得

∴抛物线C的方程为:

(Ⅱ)①当直线l的斜率不存在时,由抛物线的对称性可知x轴上任意一点A(不与点重合),都可使得x轴平分

②当直线l的斜率存在时,设直线l的方程为:

联立方程

消去y得:

*),

假设在x轴上是否存在一点,使得x轴平分

把(*)式代入上式化简得:

∴点

综上所求,在x轴上存在一点,使得x轴平分

练习册系列答案
相关题目

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一年度未发生有责任道路交通事故

下浮10%

上两年度未发生有责任道路交通事故

下浮

上三年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故

上浮10%

上一个年度发生有责任交通死亡事故

上浮30%

某机构为了解某一品牌普通6座以下私家车的投保情况,随机抽取了辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

A1

A2

A3

A4

A5

A6

数量

10

5

5

20

15

5

以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:

1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)

2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000:

①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;

②若该销售商一次购进100(车龄已满三年)该品牌二手车,求他获得利润的期望值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网