题目内容
【题目】已知椭圆: 过点, , 分别是椭圆的左、右焦点,以原点为圆心,椭圆的短轴长为直径的圆与直线相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线交椭圆于, ,求内切圆面积的最大值和此时直线的方程.
【答案】(Ⅰ)(Ⅱ),直线l的方程为,
【解析】试题分析:(1)由条件可设处圆的方程,根据直线和圆相切得到,再根据点在椭圆上得到椭圆方程;(2)由,故求△面积的最大值即可,联立直线和椭圆方程,得到二次方程,根据弦长公式和点线距得到,分析单调性可求出最值。
解析:
(Ⅰ)以原点为圆心,椭圆的短轴长为直径的圆的方程为,
由题意, ,所以.
∵点在椭圆上,∴,解得,
∴椭圆C的方程为.
(Ⅱ)由,
根据椭圆定义, ,所以,
于是求△内切圆面积的最大值即为求△面积的最大值.
设直线l的方程为, , ,则
消去得,所以, .
因为,点到直线的距离为,
所以△的面积为 .
令 ,则.
∵在上单调递增,∴当时, 取得最大值为3,
此时,直线l的方程为,
内切圆的半径为,所以内切圆面积的最大值为.
【题目】某协会对,两家服务机构进行满意度调查,在,两家服务机构提供过服务的市民中随机抽取了人,每人分别对这两家服务机构进行独立评分,满分均为分.整理评分数据,将分数以为组距分成组:,,,,,,得到服务机构分数的频数分布表,服务机构分数的频率分布直方图:
定义市民对服务机构评价的“满意度指数”如下:
分数 | |||
满意度指数 | 0 | 1 | 2 |
(1)在抽样的人中,求对服务机构评价“满意度指数”为的人数;
(2)从在,两家服务机构都提供过服务的市民中随机抽取人进行调查,试估计对服务机构评价的“满意度指数”比对服务机构评价的“满意度指数”高的概率;
(3)如果从,服务机构中选择一家服务机构,以满意度出发,你会选择哪一家?说明理由.
【题目】年底某购物网站为了解会员对售后服务(包括退货、换货、维修等)的满意度,从年下半年的会员中随机调查了个会员,得到会员对售后服务的满意度评分如下:
根据会员满意度评分,将会员的满意度从低到高分为三个等级:
满意度评分 | 低于分 | 分到分 | 不低于分 |
满意度等级 | 不满意 | 比较满意 | 非常满意 |
(1)根据这个会员的评分,估算该购物网站会员对售后服务比较满意和非常满意的频率;
(2)以(1)中的频率作为概率,假设每个会员的评价结果相互独立.
(i)若从下半年的所有会员中随机选取个会员,求恰好一个评分比较满意,另一个评分非常满意的概率;
(ii)若从下半年的所有会员中随机选取个会员,记评分非常满意的会员的个数为,求的分布列,数学期望及方差.