题目内容
【题目】在平面直角坐标系中,曲线
的参数方程为
(
为参数).以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
(1)在曲线上任取一点
,连接
,在射线
上取一点
,使
,求
点轨迹的极坐标方程;
(2)在曲线上任取一点
,在曲线
上任取一点
,求
的最小值.
【答案】(1)(2)
【解析】
(1)求出的极坐标方程,设出
点的极坐标
,通过
构建出
与
的等量关系,从而得出
点轨迹的极坐标方程;
(2)先求出的普通方程,可以得到曲线
是椭圆,然后转化为参数方程,
的最小值即为椭圆
上的点
到直线
距离的最小值,利用点到直线的距离求解最值。
解:(1)因为曲线的参数方程为
(
为参数)
所以化为普通方程为
,
故的极坐标方程为
,
设,
则,即
,
点轨迹的极坐标方程为
(2)因为曲线的极坐标方程为
所以化为直角坐标方程为
.
故可化为参数方程为
(
为参数),
的最小值为椭圆
上的点
到直线
距离的最小值.
设,则
,
。
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某班主任对全班50名学生学习积极性和对待工作的态度进行了调查,统计数据如下所示:
积极参加班级工作 | 不太主动参加班级工作 | 合计 | |
学习积极性高 | 18 | 7 | 25 |
学习积极性一般 | 6 | 19 | 25 |
合计 | 24 | 26 | 50 |
(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(2)试运用独立性检验的思想方法有多大把握认为学生的学习积极性与对班级工作的态度有关系?并说明理由.
本题参考数据:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】为了响应党的十九大所提出的教育教学改革,某校启动了数学教学方法的探索,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班40人,甲班按原有传统模式教学,乙班实施自主学习模式.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在,按照区间
,
,
,
,
进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
(1)完成表格,并判断是否有以上的把握认为“数学成绩优秀与教学改革有关”;
甲班 | 乙班 | 合计 | |
大于等于80分的人数 | |||
小于80分的人数 | |||
合计 |
(2)从乙班,
,
分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自
发言的人数为随机变量
,求
的分布列和期望.