题目内容
lim |
n→∞ |
1 |
2 |
1 |
3 |
1 |
n+1 |
1 |
e |
1 |
e |
分析:先把
[n•(1-
)(1-
)…(1-
)]n等价转化为
( n×
×
×
×…×
)n,进一步简化为
(
)n,由此能求出结果.
lim |
n→∞ |
1 |
2 |
1 |
3 |
1 |
n+1 |
lim |
n→∞ |
1 |
2 |
2 |
3 |
3 |
4 |
n |
n+1 |
lim |
n→∞ |
n2 |
n+1 |
解答:解:
[n•(1-
)(1-
)…(1-
)]n
=
( n×
×
×
×…×
)n
=
(
)n
=
.
故答案为:
.
lim |
n→∞ |
1 |
2 |
1 |
3 |
1 |
n+1 |
=
lim |
n→∞ |
1 |
2 |
2 |
3 |
3 |
4 |
n |
n+1 |
=
lim |
n→∞ |
n2 |
n+1 |
=
1 |
e |
故答案为:
1 |
e |
点评:本题考查极限的运算,解题时要认真审题,合理地进行等价转化,注意重要极限的灵活运用.
练习册系列答案
相关题目