题目内容

已知,函数,当时, 的值域是
(1)求常数的值;
(2)当时,设,求的单调区间.

(1)(2)的单调递增区间为,单调递减区间为

解析试题分析:(1)先由辅助角公式化为一个角的三角函数,按照复合函数求值域的方法,结合所给的范围,求出内函数的值域,作为中间函数的定义域,利用三角函数图像求出中间函数的值域,作为外函数的定义域,再利用外函数的性质求出外函数的值域即为所求函数的值域,注意分类讨论.(2)先利用诱导公式求出的解析式,利用复合函数单调区间的求法求出的单调区间.
试题解析:(1)由题设知:     1分
知:,得      3分
∴当时, , 即 , ;      5分
时, , 即      7分
所以     8分
(2)由(1)及题设知:     9分
          10分

     12分
的单调递增区间为
的单调递减区间为     14分
(其他写法参照给分)
考点:三角变换;三角函数在某个区间上的值域;诱导公式;三角函数单调性

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网