题目内容

1.在三棱锥P-ABC中,侧棱PA,PB,PC两两垂直,侧面积为2,该三棱锥外接球表面积的最小值为4π.

分析 三棱锥的三条侧棱两两垂直,扩展为长方体,二者的外接球是同一个,根据球的表面积,求出球的直径,就是长方体的对角线长,设出三度,利用基本不等式求出三棱锥外接球的直径的最值,从而得出该三棱锥外接球的表面积的最小值.

解答 解:三棱锥的三条侧棱两两垂直,扩展为长方体,二者的外接球是同一个,
因为三棱锥S-ABC的侧面积为2,
设长方体的三同一点出发的三条棱长为:a,b,c,
所以$\frac{1}{2}$(SA•SB+SA•SC+SB•SC)=$\frac{1}{2}$(ab+bc+ac)=2,
⇒ab+bc+ac=4,
该三棱锥外接球的直径2R就其长方体的对角线长,
从而有:(2R)2=a2+b2+c2≥ab+bc+ac=4,当且仅当a=b=c时取等号.
所以2R≥2⇒R≥1,
则该三棱锥外接球的表面积的最小值为4πR2=4π×12═4π
故答案为:4π

点评 本题是基础题,考查球的内接体知识,基本不等式的应用,考查空间想象能力,计算能力,三棱锥扩展为长方体是本题的关键.

练习册系列答案
相关题目
6.对于一组向量$\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3},…,\overrightarrow{a_n}$(n∈N*),令$\overrightarrow{S_n}=\overrightarrow{a_1}+\overrightarrow{a_2}+\overrightarrow{a_3}+…+\overrightarrow{a_n}$,如果存在$\overrightarrow{a_p}$(p∈{1,2,3…,n}),使得|$\overrightarrow{a_p}|≥|\overrightarrow{S_n}-\overrightarrow{a_p}$|,那么称$\overrightarrow{a_p}$是该向量组的“h向量”.
(1)设$\overrightarrow{a_n}$=(n,x+n)(n∈N*),若$\overrightarrow{a_3}$是向量组$\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3}$的“h向量”,
求实数x的取值范围;
(2)若$\overrightarrow{a_n}=({(\frac{1}{3})^{n-1}},{(-1)^n})$(n∈N*),向量组$\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3},…,\overrightarrow{a_n}$是否存在“h向量”?
给出你的结论并说明理由;
(3)已知$\overrightarrow{a_1}、\overrightarrow{a_2}、\overrightarrow{a_3}$均是向量组$\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3}$的“h向量”,其中$\overrightarrow{a_1}$=(sinx,cosx),$\overrightarrow{a_2}$=(2cosx,2sinx).设在平面直角坐标系中有一点列Q1,Q2,Q3,…,Qn满足:Q1为坐标原点,Q2为$\overrightarrow{a_3}$的位置向量的终点,且Q2k+1与Q2k关于点Q1对称,Q2k+2与Q2k+1(k∈N*)关于点Q2对称,求|$\overrightarrow{{Q_{2013}}{Q_{2014}}}$|的最小值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网