题目内容

定义在R上的函数f(x)=
1
|x-2|
(x≠2)
1   (x=2)
,若关于x的方程f2(x)+bf(x)+c=0恰有5个不同的实数解x1,x2,x3,x4,x5,则f(x1+x2+x3+x4+x5)=(  )
A、
1
4
B、
1
8
C、
1
12
D、
1
16
分析:先根据一元二次方程根的情况可判断f(2)一定是一个解,再假设f(x)的一解为A可得到x1+x2=4,同理可得到x3+x4=4,进而可得到x1+x2+x3+x4+x5=10,然后代入函数f(x)的解析式即可得到最后答案.
解答:解:对于f2(x)+bf(x)+c=0来说,f(x)最多只有2解,又f(x)=
1
|x-2|
(x≠2),当x不等于2时,x最多四解.
而题目要求5解,即可推断f(2)为一解!
假设f(x)的1解为A,得f(x)=
1
|x-2|
=A;
算出x1=2+A,x2=2-A,x1+x2=4;
同理:x3+x4=4;
所以:x1+x2+x3+x4+x5=4+4+2=10;
f(x1+x2+x3+x4+x5)=
1
8

故选B.
点评:本题主要考查一元二次方程根的情况和含有绝对值的函数的解法.考查基础知识的综合运用能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网