搜索
题目内容
分别写在六张卡片上,放在一盒子中。 (1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数卡片则停止抽取,否则继续进行,求抽取次数
的分布列和数学期望.
试题答案
相关练习册答案
(Ⅰ)
(Ⅱ)
(1)计事件A为“任取两张卡片,将卡片上的函数相加得到的函数是奇函数”,
所以
………5分
(2)
可取1,2,3,4.
,
;…………10分
故ξ的分布列为
ξ
1
2
3
4
P
答:
的数学期望为
…………13分
练习册系列答案
体验型学案系列答案
周周大考卷系列答案
激活思维优加课堂系列答案
全能达标100分系列答案
智能考核卷系列答案
活力试卷系列答案
琢玉计划系列答案
小学全能测试卷系列答案
名校全优考卷系列答案
课课优能力培优100分系列答案
相关题目
为了更好地服务于2010年世博会,上海某酒店随机地对最近入住的
名旅客进行服务质量问卷调查,把旅客对住宿的舒适满意度与价格满意度分为五个等级:
“1级(很不满意)”、“2级(不满意)”、“3级(一般)”、“4级(满意)”、“5级(很满意)”其结果如表所示,若在这个样本中,任选一人,其舒适度为
,价格满意度
.
(1)根据样本中的数据求P(y=5)及P(x≥3且y=3)的值;
(2)若
的期望值为
,求a、b、c的值;
(3)求该人在对价格满意(满意度不低于3)的条件下对舒适度也满意的概率.
(本小题满分13分)重庆、成都两个现代化城市之间有7条网线并联,这7条网线能通过的信息量分别为1,1,2,2,2,3,3(信息流量单位),现从中任选三条网线,设可通过的信息量为
。若可通过的信息量
≥6,则可保证信息通畅。(1)求线路信息通畅的概率;(2)求线路可通过的信息量
的分布列和数学期望。
网
某城市有甲、乙、丙、丁4个旅游景点,一位客人游览这4个景点的概率都是0.6,且客人是否游览哪个景点互不影响.设
表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.
(1)求
的分布列及数学期望;
(2)记“函数
在区间
上单调递增”为事件A,求事件A的概率.
(本题满分12分)
甲、乙两个射手进行射击训练,甲击中目标的概率为
,乙击中目标的概率为
,每人各射击两发子弹为一个“单位射击组”,若甲击中目标的次数比乙击中目标的次数多,则称此组为“单位进步组”.
(1)求一个“单位射击组”为“单位进步组”的概率;(2)现要完成三个“单位射击组”,记出现“单位进步组”的次数为
,求
的分布列与数学期望.
射击运动员在双项飞碟比赛中,每轮比赛连续发射两枪,击中两个飞靶得2分,击中一个飞靶得1分,不击中飞靶得0分,某射击运动员在每轮比赛连续发射两枪时,第一枪命中率为
,第二枪命中率为
,该运动员如进行2轮比赛.
(Ⅰ)求该运动员得4分的概率为多少?
(Ⅱ)若该运动员所得分数为
,求
的分布列及数学期望.
离散型随机变量的标准差反映了随机变量取值偏离于
的平均程度,标准差越小,则随机变量偏离于均值的
越
.
某公司“咨询热线”电话共有8路外线,经长期统计发现,在8点到10点这段时间内,外线电话同时打入情况如下表所示:
电话同时
打入个数
0
1
2
3
4
5
6
7
8
概率
0.13
0.35
0.27
0.14
0.08
0.02
0.01
0
0
(1)若这段时间内,公司只安排了2位接线员(一个接线员一次只能接一个电话)
①求至少一路电话不能一次接通的概率;
②在一周五个工作日中,如果有三个工作日的这段时间(8点至10点)内至少一路电话不能一次接通,那么公司的形象将受到损害,现用至少一路电话不能一次接通的概率表示公司形象的“损害度”,求上述情况下公司形象的“损害度”.
(2)求一周五个工作日的这段时间(8点至10点)内,电话同时打入数
X
的均值.
设
是随机变量,且
,则
( ) .
A.
B.
C.
D.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总