题目内容
【题目】设数列满足:,.
(Ⅰ)求的通项公式及前项和;
(Ⅱ)若等差数列满足, ,问:与的第几项相等?
【答案】(I),(II)与数列的第项相等
【解析】
(Ⅰ)推导出数列{an}满足:a1=1,an+1=﹣2an,从而{an}是首项为1,公比为﹣2的等比数列,由此能求出{an}的通项公式和前n项和;(Ⅱ)由 b1=﹣8,b2=﹣6,{bn}为等差数列,求出{bn}的通项公式,从而b37=2×37﹣10=64.由此能求出b37与数列{an}的第7项相等.
(Ⅰ)依题意,数列满足:,,
所以是首项为1,公比为的等比数列.
则的通项公式为,
由等比数列求和公式得到:前项和.
(Ⅱ)由 (Ⅰ) 可知,, ,
因为为等差数列, .
所以的通项公式为.
所以.
令,解得.
所以与数列的第项相等.
【题目】某工厂的机器上存在一种易损元件,这种元件发生损坏时,需要及时维修. 现有甲、乙两名工人同时从事这项工作,下表记录了某月1日到10日甲、乙两名工人分别维修这种元件的件数.
日期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 | 8日 | 9日 | 10日 |
甲维修的元件数 | 3 | 5 | 4 | 6 | 4 | 6 | 3 | 7 | 8 | 4 |
乙维修的元件数 | 4 | 7 | 4 | 5 | 5 | 4 | 5 | 5 | 4 | 7 |
(1)从这天中,随机选取一天,求甲维修的元件数不少于5件的概率;
(2)试比较这10天中甲维修的元件数的方差与乙维修的元件数的方差的大小.(只需写出结论);
(3)由于甲、乙的任务量大,拟增加工人,为使增加工人后平均每人每天维修的元件不超过3件,请利用上表数据估计最少需要增加几名工人.
【题目】已知某企业有职工5000人,其中男职工3500人,女职工1500人.该企业为了丰富职工的业余生活,决定新建职工活动中心,为此,该企业工会采用分层抽样的方法,随机抽取了300名职工每周的平均运动时间(单位:h),汇总得到频率分布表(如表所示),并据此来估计该企业职工每周的运动时间:
平均运动时间 | 频数 | 频率 |
[0,2) | 15 | 0.05 |
[2,4) | m | 0.2 |
[4,6) | 45 | 0.15 |
[6,8) | 755 | 0.25 |
[8,10) | 90 | 0.3 |
[10,12) | p | n |
合计 | 300 | 1 |
(1)求抽取的女职工的人数;
(2)①根据频率分布表,求出m、n、p的值,完成如图所示的频率分布直方图,并估计该企业职工每周的平均运动时间不低于4h的概率;
男职工 | 女职工 | 总计 | |
平均运动时间低于4h | |||
平均运动时间不低于4h | |||
总计 |
②若在样本数据中,有60名女职工每周的平均运动时间不低于4h,请完成以下2×2列联表,并判断是否有95%以上的把握认为“该企业职工毎周的平均运动时间不低于4h与性别有关”.
附:K2=,其中n=a+b+c+d.
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
【题目】十八大以来,我国新能源产业迅速发展.以下是近几年某新能源产品的年销售量数据:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代码 | 1 | 2 | 3 | 4 | 5 |
新能源产品年销售(万个) | 1.6 | 6.2 | 17.7 | 33.1 | 55.6 |
(1)请画出上表中年份代码与年销量的数据对应的散点图,并根据散点图判断.
与中哪一个更适宜作为年销售量关于年份代码的回归方程类型;
(2)根据(Ⅰ)的判断结果及表中数据,建立关于的回归方程,并预测2019年某新能源产品的销售量(精确到0.01).
参考公式:,.
参考数据:,,,,,,,其中.