题目内容
14.已知数列{bn}的前n项和为Sn,满足Sn+1+5Sn-1=6(Sn-bn-1),n≥2,n∈N*,且b1=1,b2=5,数列{an}满足a1=1,an=bn•$\frac{1}{{n}^{2}({3}^{n}-{2}^{n})}$,n∈N*.(1)证明:数列{bn+1-3bn}是等比数列;
(2)求证:数列{an}的前n项和为Tn<2.
分析 (1)通过对Sn+1+5Sn-1=6(Sn-bn-1)变形可知bn+1-3bn=2(bn-3bn-1),进而计算可得结论;
(2)通过(1)可知bn+1-3bn=2n,变形可得bn+1+2n+1=3(bn+2n),进而可知数列{bn+2n}是首项、公比均为3的等比数列,利用an=$\frac{1}{{n}^{2}}$<$\frac{1}{n-1}$-$\frac{1}{n}$(n≥2),并项相加即得结论.
解答 证明:(1)∵Sn+1+5Sn-1=6(Sn-bn-1),n≥2,n∈N*,
∴Sn+1-Sn=5Sn-5Sn-1-6bn-1,
即bn+1=5bn-6bn-1,
∴bn+1-3bn=2(bn-3bn-1),
又∵b1=1,b2=5,
∴b2-3b1=5-3=2,
∴数列{bn+1-3bn}是以首项、公比均为2的等比数列;
(2)由(1)知bn+1-3bn=2n,
∴bn+1+2n+1=3(bn+2n),
又∵b1+21=1+2=3,
∴数列{bn+2n}是首项、公比均为3的等比数列,
∴bn+2n=3n,
∴an=bn•$\frac{1}{{n}^{2}({3}^{n}-{2}^{n})}$=(3n-2n)•$\frac{1}{{n}^{2}({3}^{n}-{2}^{n})}$=$\frac{1}{{n}^{2}}$,
∴an=$\frac{1}{{n}^{2}}$<$\frac{1}{n(n-1)}$=$\frac{1}{n-1}$-$\frac{1}{n}$(n≥2),
∴Tn<1+1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n-1}$-$\frac{1}{n}$
=2-$\frac{1}{n}$
<2.
点评 本题考查等比数列的判定,考查数列的前n项和,考查运算求解能力,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.
A. | [1,3) | B. | (-∞,1]∪(3,+∞) | C. | (1,3] | D. | (-∞,1)∪[3,+∞) |