题目内容
【题目】随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户,按年龄分组进行访谈,统计结果如右表.
组 号 | 年龄 | 访谈 人数 | 愿意 使用 |
1 | [18,28) | 4 | 4 |
2 | [28,38) | 9 | 9 |
3 | [38,48) | 16 | 15 |
4 | [48,58) | 15 | 12 |
5 | [58,68) | 6 | 2 |
(Ⅰ)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取12人,则各组应分别抽取多少人?
(Ⅱ)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.
(Ⅲ)按以上统计数据填写下面2×2列联表,并判断以48岁为分界点,能否在犯错误不超过1%的前提下认为,是否愿意选择此款“流量包”套餐与人的年龄有关?
年龄不低于48岁的人数 | 年龄低于48岁的人数 | 合计 | |
愿意使用的人数 | |||
不愿意使用的人数 | |||
合计 |
参考公式:,其中:n=a+b+c+d.
P(k2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(Ⅰ)3人,5人,4人;(Ⅱ);(Ⅲ)见解析.
【解析】试题分析:
(1)由分层抽样的定义可得分层抽样的方法抽取12人,各组分别为3人,5人,4人.
(2)列出所有可能的事件,由古典概型公式可得这2人中至少有1人愿意选择此款“流量包”套餐的概率.
(3)结合列联表可得 ,则在犯错误不超过1%的前提下可以认为,是否愿意选择此款“流量包”套餐与人的年龄有关.
试题解析:
(Ⅰ)因为,,,所以第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取12人,各组分别为3人,5人,4人.
(Ⅱ)第5组的6人中,不愿意选择此款“流量包”套餐的4人分别记作:A、B、C、D,愿意选择此款“流量包”套餐2人分别记作x、y.则从6人中选取2人有:AB,AC,AD,Ax,Ay,BC,BD,Bx,By,CD,Cx,Cy,Dx,Dy,xy共15个结果,其中至少有1人愿意选择此款“流量包”:Ax,Ay,Bx,By,Cx,Cy,Dx,Dy,xy
共9个结果,所以这2人中至少有1人愿意选择此款“流量包”套餐的概率.
(Ⅲ)2×2列联表:
年龄不低于48岁的人数 | 年龄低于48岁的人数 | 合计 | |
愿意使用的人数 | 14 | 28 | 42 |
不愿意使用的人数 | 7 | 1 | 8 |
合计 | 21 | 29 | 50 |
∴,
∴在犯错误不超过1%的前提下可以认为,是否愿意选择此款“流量包”套餐与人的年龄有关.
【题目】为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间(单位:小时)与当天投篮命中率之间的关系:
时间 | 1 | 2 | 3 | 4 | 5 |
命中率 | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
小李这5天的平均投篮命中率;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率.
附:线性回归方程中系数计算公式, ,