题目内容
【题目】已知直线且.圆C与直线相切于点A,且点A的纵坐标为,圆心C在直线上.
(1)求直线之间的距离;
(2)求圆C的标准方程;
(3)若直线经过点且与圆C交于两点,当△CPQ的面积最大时,求直线的方程.
【答案】(1)2(2)(3)或
【解析】
(1)由两直线平等求得,然后由平行线间距离公式得距离.
(2)求出点坐标,可得过与垂直的直线方程,由此可得圆心坐标,得圆半径,从而得圆方程;
(3)利用知时,面积最大.从而圆心到直线的距离为,从而求得直线方程.
解:(1)∵两条线平行,
∴,
直线方程为,即,
∴
(2)∵
由得,∴,
设过A与l2垂直的直线方程为,,,
∴过A与l2垂直的直线方程为,
∴,∴圆心为(0,0),半径为,
∴圆C的标准方程为
(3)∵,
∴当,即时,面积最大.此时,圆心到直线的距离为,
显然直线满足题意,
当直线斜率存在时,设方程为,即,
由,解得,直线方程为,即.
∴直线的方程为或.
练习册系列答案
相关题目