题目内容

【题目】已知函数,函数是区间上的减函数.

(1)求的最大值;

(2)若上恒成立,求的取值范围;

(3)讨论关于的方程的根的个数.

【答案】(1);(2);(3)当,即时,方程无解;当,即时,方程有一个解;当,即时,方程有两个解.

【解析】试题分析:(1)由题意由于,所以函数,又因为该函数在区间上的减函数,所以可以得到的范围;(2)由于上恒成立,解出即可;(3)利用方程与函数的关系可以构造成两函数图形的交点个数加以分析求解.

试题解析:(1)∵,∴

又∵上单调递减,∴恒成立,

,∴故的最大值为-1;

(2)∵

∴只需上恒成立,

则需则

又∵恒成立,∴

(3)由于,令

,∴当时, ,即单调递增;

时, ,即单调递减,∴

又∵

∴当,即时,方程无解;

,即时,方程有一个解;

,即时,方程有两个解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网