题目内容
【题目】已知函数f(x)=x+ 的图象过点P(1,5).
(1)求实数m的值,并证明函数f(x)是奇函数;
(2)利用单调性定义证明f(x)在区间[2,+∞)上是增函数.
【答案】
(1)解: 的图象过点P(1,5),
∴5=1+m,
∴m=4
∴ ,f(x)的定义域为{x|x≠0},关于原点对称,
∴f(x)=﹣f(x),
f(x)是奇函数.
(2)证明:设x2>x1≥2,
则
又x2﹣x1>0,x1≥2,x2>2,∴x1x2>4
∴f(x2)﹣f(x1)>0,
∴f(x2)>f(x1),
即f(x)在区间[2,+∞)上是增函数
【解析】(1)代入点P,求得m,再由奇函数的定义,即可得证;(2)根据单调性的定义,设值、作差、变形、定符号和下结论即可得证.
【考点精析】掌握函数单调性的判断方法和函数的奇偶性是解答本题的根本,需要知道单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较;偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
练习册系列答案
相关题目
【题目】据报道,某公司的33名职工的月工资(以元为单位)如下:
职务 | 董事长 | 副董事长 | 董事 | 总经理 | 经理 | 管理员 | 职员 |
人数 | 1 | 1 | 2 | 1 | 5 | 3 | 20 |
工资 | 5 500 | 5 000 | 3 500 | 3 000 | 2 500 | 2 000 | 1 500 |
(1)求该公司职工月工资的平均数、中位数、众数;
(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到元)
(3)你认为哪个统计量更能反映这个公司员工的工资水平?结合此问题谈一谈你的看法.