题目内容

已知椭圆的中心为O,长轴、短轴的长分别为2a,2b(a>b>0),A,B分别为椭圆上的两点,且OA⊥OB,过O点作OM⊥AB交AB于点M,求点M的轨迹。
点M的轨迹是以O为圆心,为半径的圆。
以O点为坐标原点,长轴所在直线为x轴,短轴所在直线为y轴建立平面直角坐标系,则椭圆的方程为
以O点为极点,x轴为极轴建立极坐标系,则椭圆的极坐标方程为
由于OA⊥OB,可设A(r1,q1),,则

所以

因为OM⊥AB,由等面积得|OM|·|AB|=|OA|·|OB|,
从而|OM|2·|AB|2=|OA|2·|OB|2,,且|AB|2=|OA|2+|OB|2,
,所以,
故点M的轨迹是以O为圆心,为半径的圆。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网