题目内容

设F1、F2分别是椭圆
x2
4
+y2
=1的左、右焦点.
(Ⅰ)若P是第一象限内该椭圆上的一点,且
PF1
PF2
=-
5
4
,求点P的作标;
(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为作标原点),求直线l的斜率k的取值范围.
分析:(Ⅰ)求出椭圆的a,b,c,P是第一象限内该椭圆上的一点设为(x,y),利用
PF1
PF2
=-
5
4
,以及P在椭圆上,求点P的坐标;
(Ⅱ)设过定点M(0,2)的直线l方程为y=kx+2,A(x1,y1),B(x2,y2),与椭圆联立,注意到交于不同的两点A、B,△>0且∠AOB为锐角(其中O为作标原点),就是
OA
OB
=x1x2+y1y2>0
利用韦达定理,代入化简,求直线l的斜率k的取值范围.
解答:解:(Ⅰ)易知a=2,b=1,c=
3

F1(-
3
,0)
F2(
3
,0)
.设P(x,y)(x>0,y>0).
PF1
PF2
=(-
3
-x,-y)(
3
-x,-y)=x2+y2-3=-
5
4
,又
x2
4
+y2=1

联立
x2+y2=
7
4
x2
4
+y2=1
,解得
x2=1
y2=
3
4
?
x=1
y=
3
2
P(1,
3
2
)


(Ⅱ)显然x=0不满足题设条件.可设l的方程为y=kx+2,设A(x1,y1),B(x2,y2).
联立
x2
4
+y2=1
y=kx+2
?x2+4(kx+2)2=4?(1+4k2)x2+16kx+12=0

x1x2=
12
1+4k2
x1+x2=-
16k
1+4k2

由△=(16k)2-4•(1+4k2)•12>016k2-3(1+4k2)>0,4k2-3>0,得k2
3
4
.①
又∠AOB为锐角?cos∠AOB>0?
OA
OB
>0

OA
OB
=x1x2+y1y2>0

又y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4
∴x1x2+y1y2=(1+k2)x1x2+2k(x1+x2)+4
=(1+k2)•
12
1+4k2
+2k•(-
16k
1+4k2
)+4

=
12(1+k2)
1+4k2
-
2k•16k
1+4k2
+4

=
4(4-k2)
1+4k2
>0

-
1
4
k2<4
.②
综①②可知
3
4
k2<4

∴k的取值范围是(-2,-
3
2
)∪(
3
2
,2)
点评:本题主要考查直线、椭圆、平面向量的数量积等基础知识,以及综合运用数学知识解决问题及推理计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网