题目内容

【题目】现有某批次同一型号的产品共10件,其中有8件合格品,2件次品.
(Ⅰ)某检验员从中有放回地连续抽取产品2次,每次随机抽取1件,求两次都取到次品的概率;
(Ⅱ)若该检验员从中任意抽取2件,用X表示取出的2件产品中次品的件数,求X的分布列.

【答案】解:(Ⅰ)从该产品中任取一件取到次品的概率为: =

故检验员两次都取到次品的概率为

(Ⅱ)显然X的可能取值为0,1,2.

P(X=0)= = ,P(X=1)= = ,P(X=2)= =

所以X的分布列为

X

0

1

2

P


【解析】(Ⅰ)求出任取一件取到次品的概率,然后求解检验员两次都取到次品的概率.(Ⅱ)判断X的可能值,求出概率,然后求解分布列即可.
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网