题目内容

3.已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,且a2+b2-c2-ab=0,若△ABC的面积为$\frac{\sqrt{3}}{2}$c,则ab的最小值为(  )
A.24B.12C.6D.4

分析 由题意和余弦定理可得C的值,进而由面积公式可得c和ab的关系,代入已知式子由基本不等式可得ab的不等式,解不等式可得.

解答 解:∵a2+b2-c2-ab=0,∴a2+b2-c2=ab,
∴由余弦定理可得cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,
∵C∈(0,π),∴C=$\frac{π}{3}$,
∵△ABC的面积为$\frac{\sqrt{3}}{2}$c,∴$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{2}$c,
∴$\frac{1}{2}$ab•$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$c,∴c=$\frac{1}{2}$ab,
代入已知式子可得a2+b2-$\frac{1}{4}$(ab)2-ab=0,
∴$\frac{1}{4}$(ab)2+ab=a2+b2≥2ab,
整理可得(ab)2-4ab≥0,
解关于ab的不等式可得ab≥4,或ab≤0(舍去)
当且仅当a=b=2时取到等号,
∴ab的最小值为4,
故选:D.

点评 本题考查解三角形,涉及余弦定理和三角形的面积公式以及基本不等式和不等式的解法,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网