搜索
题目内容
椭圆
以双曲线
的实轴为短轴、虚轴为长轴,且与抛物线
交于
两点.
(1)求椭圆
的方程及线段
的长;
(2)在
与
图像的公共区域内,是否存在一点
,使得
的弦
与
的弦
相互垂直平分于点
?若存在,求点
坐标,若不存在,说明理由.
试题答案
相关练习册答案
(1)
,
;(2)不存在这样的点
.
试题分析:(1) 求椭圆
的方程,只需求出
即可,由双曲线
得,
,故得椭圆
,从而得椭圆
的方程为
,求线段
的长,只需求出
的坐标,由椭圆
的方程,及抛物线的方程
,联立方程组解得
,从而可得线段
的长;(2)这是探索性命题,一般假设存在,可设出
,代入椭圆
的方程,两式作差,得
,设出
,代入抛物线
,两式作差,得
,
的弦
与
的弦
相互垂直得,
,从而得到
,由题设条件,来判断点
是否存.
试题解析:(1)椭圆
:
;联立方程组解得
,所以
.
(2)假设存在,由题意将
坐标带入
做差得
,将
坐标带入
得
,
,故满足条件的
点在抛物线
外,所以不存在这样的点
.
练习册系列答案
西城学科专项测试系列答案
小考必做系列答案
小考实战系列答案
小考复习精要系列答案
小考总动员系列答案
小升初必备冲刺48天系列答案
68所名校图书小升初高分夺冠真卷系列答案
伴你成长周周练月月测系列答案
小升初金卷导练系列答案
萌齐小升初强化模拟训练系列答案
相关题目
已知中心在坐标原点,焦点在
轴上的椭圆过点
,且它的离心率
.
(1)求椭圆的标准方程;
(2)与圆
相切的直线
交椭圆于
两点,若椭圆上一点
满足
,求实数
的取值范围.
已知椭圆
的由顶点为A,右焦点为F,直线
与x轴交于点B且与直线
交于点C,点O为坐标原点,
,过点F的直线
与椭圆交于不同的两点M,N.
(1)求椭圆的方程;
(2)求
的面积的最大值.
已知椭圆C:
(
)的短轴长为2,离心率为
(1)求椭圆C的方程
(2)若过点M(2,0)的引斜率为
的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足
(
为坐标原点),当
时,求实数
的取值范围?
设A
1
、A
2
与B分别是椭圆E:
=1(a>b>0)的左、右顶点与上顶点,直线A
2
B与圆C:x
2
+y
2
=1相切.
(1)求证:
=1;
(2)P是椭圆E上异于A
1
、A
2
的一点,若直线PA
1
、PA
2
的斜率之积为-
,求椭圆E的方程;
(3)直线l与椭圆E交于M、N两点,且
·
=0,试判断直线l与圆C的位置关系,并说明理由.
如图,在平面直角坐标系xOy中,椭圆的中心在原点O,右焦点F在x轴上,椭圆与y轴交于A、B两点,其右准线l与x轴交于T点,直线BF交椭圆于C点,P为椭圆上弧AC上的一点.
(1)求证:A、C、T三点共线;
(2)如果
=3
,四边形APCB的面积最大值为
,求此时椭圆的方程和P点坐标.
若椭圆
的焦点分别为
,弦
过点
,则
的周长为
A.
B.
C.8
D.
已知抛物线D的顶点是椭圆C:
=1的中心,焦点与该椭圆的右焦点重合.
(1)求抛物线D的方程;
(2)过椭圆C右顶点A的直线l交抛物线D于M、N两点.
①若直线l的斜率为1,求MN的长;
②是否存在垂直于x轴的直线m被以MA为直径的圆E所截得的弦长为定值?如果存在,求出m的方程;如果不存在,说明理由.
在△ABC中,∠ACB=60°,sinA∶sinB=8∶5,则以A、B为焦点且过点C的椭圆的离心率为________.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总