题目内容

【题目】在△ABC中,cosA=﹣ ,cosB=
(1)求sinA,sinB,sinC的值
(2)设BC=5,求△ABC的面积.

【答案】
(1)解:sinA= = ,sinB= =

sinC=sin(A+B)=sinAcosB+cosAsinB= × × =


(2)解:由正弦定理知 =

∴AC= sinB= × =

∴SABC= BCACsinC= ×5× × =


【解析】(1)根据cosB,cosA的值可分别求得sinA,sinB的值,继而根据sinC=sin(A+B)利用两角和公式求得sinC的值.(2)先根据正弦定理求得AC的值,最后根据三角形面积公式求得答案.
【考点精析】关于本题考查的正弦定理的定义,需要了解正弦定理:才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网