题目内容

在△ABC中,三个内角A、B、C的对边分别为a、b、c,若
1
a+b
+
1
b+c
=
3
a+b+c
,试问A、B、C是否成等差数列,若不成等差数列,请说明理由.若成等差数列,请给出证明.
分析:先整理
1
a+b
+
1
b+c
=
3
a+b+c
得b2=a2+c2-ac.进而利用余弦定理求得cosB的值,进而求得B,进而根据三角形内角和可知A+C=2B判断出A、B、C成等差数列.
解答:证明:A、B、C成等差数列,下面用综合法给出证明:
1
a+b
+
1
b+c
=
3
a+b+c

a+b+c
a+b
+
a+b+c
b+c
=3,
c
a+b
+
a
b+c
=1,
∴c(b+c)+a(a+b)=(a+b)(b+c),
∴b2=a2+c2-ac.
在△ABC中,由余弦定理,得
cosB=
a2+c2-b2
2ac
=
ac
2ac
=
1
2

∵0°<B<180°∴B=60°.
∴A+C=2B=120°,
∴A、B、C成等差数列.
点评:本题主要考查了等差关系的确定,余弦定理的应用和解三角形问题.考查了学生综合分析问题和基本的运算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网