题目内容
【题目】中国古代数学名草《周髀算经》曾记载有“勾股各自乘,并而开方除之”,用符号表示为a2+b2=c2(a,b,c∈N*),我们把a,b,c叫做勾股数.下列给出几组勾股数:3,4,5;5,12,13;7,24,25;9,40,41,以此类推,可猜测第5组股数的三个数依次是 .
【答案】11,60,61
【解析】解:先找出勾股数的规律:①以上各组数均满足a2+b2=c2;②最小的数(a)是奇数,其余的两个数是连续的正整数;③最小奇数的平方等于另两个连续整数的和,
如32=9=4+5,52=25=12+13,72=49=24+25,92=81=40+41…,由以上特点我们可第⑤组勾股数:112=121=60+61,
所以答案是11,60,61.
【考点精析】本题主要考查了归纳推理的相关知识点,需要掌握根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理才能正确解答此题.
练习册系列答案
相关题目
【题目】设函数f(x),g(x)在区间(0,5)内导数存在,且有以下数据:
x | 1 | 2 | 3 | 4 |
f(x) | 2 | 3 | 4 | 1 |
f′(x) | 3 | 4 | 2 | 1 |
g(x) | 3 | 1 | 4 | 2 |
g′(x) | 2 | 4 | 1 | 3 |
则曲线f(x)在点(1,f(1))处的切线方程是;函数f(g(x))在x=2处的导数值是 .