题目内容
【题目】已知某工厂要设计一个部件(如图阴影部分所示),要求从圆形铁片上进行裁剪,部件由三个全等的矩形和一个等边三角形构成,设矩形的两边长分别为,(单位:cm),且要求 ,部件的面积是.
(1)求y关于x的函数表达式,并求定义域;
(2)为了节省材料,请问x取何值时,所用到的圆形铁片面积最小,并求出最小值.
【答案】(1),;(2)时,面积最小,.
【解析】
(1)利用已知条件求出,然后求解函数的定义域即可.
(2)设圆形铁片半径为R,则面积S=πR2,过圆心O作CD的垂线,垂足为E,交AB于点F,连结OD,求出R的表达式,然后利用基本不等式求解最小值即可.
(1)由题意,利用矩形面积和正三角形的面积公式,
可得,整理得,
又由,解得,即函数的定义域为,
即,.
(2)设圆形铁片半径为R,则面积S=πR2,
过圆心O作CD的垂线,垂足为E,交AB于点F,连结OD,则,
所以=,
因为x2>0,由基本不等式,可得,
当且仅当,即时,取等号,
所以圆形铁片的最小面积为(cm2),
答:当x=2时,所用圆形贴片的面积最小,最小面积为(cm2).
练习册系列答案
相关题目