题目内容

如图:已知正方体ABCD-A1B1C1D1中,E为棱CC1的中点.如果一只蜜蜂在正方体ABC-A1B1C1D1内部任意飞,则它飞入三棱锥A1-BDE内部的概率为( )
A.  B.C.  D.
A
由已知中正方体ABCD-A1B1C1D1中,E为棱CC1的中点.如果一只蜜蜂在正方体ABC-A1B1C1D1内部任意飞,我们设正方体ABCD-A1B1C1D1的棱长为2,分别计算出正方体的体积及棱锥的体积,代入几何概型概率公式,即可得到答案.
解:设正方体ABCD-A1B1C1D1的棱长为2,则
V正方体=8
又∵E为棱CC1的中点,
则BD=A1B=A1D=2,BE=DE=,A1E=3,
设AC与BD交于点O,连接A10,EO,则EO=,A1O=

由勾股定理,易得EO⊥A1O,又∵A1O⊥BD,EO∩BD=O
∴A1O⊥平面BDE,即A1O为三棱锥A1-BDE高
∴VA1-BDE=?SBDE?A1O=2
则它飞入三棱锥A1-BDE内部的概率P=
故选A
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网